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Abstract. Reconstruction of the primordial density field from the observed, late-time density
field is an essential step in modern cosmological analyses of galaxy surveys, including with the
Baryon Acoustic Oscillation (BAO) feature. However, standard reconstruction, which uses the
Zel’dovich approximation, or first order Lagrangian perturbation theory (LPT), to estimate
the displacement field mapping observed galaxies back to their initial positions, relies on large-
scale structure physics and tend to struggle at smaller scales, where nonlinearities dominate.
Several recent works have implemented deep learning models, trained on cosmological N-
body simulations, to learn the initial density field from the late-time field. Expanding on this
idea, we present a method to reconstruct the displacement field from the initial conditions
using a a convolutional neural network. We show that our model improves estimation of the
displacement field compared to LPT, even to higher order. We also apply our framework
to learn the optimal transport displacement field, which more closely approximates the true
displacement field than the Zel’dovich approximation while still being sourced by a scalar
potential. By enabling rapid forward modeling of initial conditions to a late-time displacement
field, this work highlights the growing ability of machine learning to extract information at
nonlinear scales and empower precision field-level inference.
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1 Introduction

Although traditional analysis of cosmological galaxy surveys typically relies on summary
statistics, such as power spectra, fully extracting information about the formation and evolu-
tion of large-scale structure from modern observations requires accurate methods of simulation
[1–6]. N -body simulations, which numerically evolve the positions and velocities of millions
to billions of particles under the nonlinear effects of gravity, are the most effective such sim-
ulations [7, 8]. However, N -body simulations are computationally expensive, so using them
to constrain cosmological parameters by comparing the observed Universe to many simulated
Universes is difficult. Several methods, such as Lagrangian Perturbation Theory (LPT) [9–12]
and particle mesh (PM) codes [13–16], approximate the full evolution but tend to struggle at
small scales, where nonlinearities dominate. Recent work has sought to use machine learning,
either on its own or as an augmentation to less accurate methods, to accelerate this task of
forward modeling, that is, predicting structure formation from initial conditions, as a cheap
and accurate alternative to N -body simulations [17–22]
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Here, we propose the use of a machine learning model to predict the displacement field,
which maps the primordial density field to a late-time, evolved density field, from initial
conditions. In the context of N -body simulations, the displacement field records the change
in position of each particle from initial to final conditions. Thus, such a model can enable
rapid forward modeling of the initial density field at almost no computational cost.

One important use of the displacement field is for measurements of the baryon acoustic
oscillation (BAO) feature in galaxy spectroscopic surveys, which allow for constraints on the
Hubble parameter and the accelerating expansion of the universe [23–26]. An essential step
in standard BAO analysis is reconstruction, which attempts to reverse the smearing effects
of nonlinear gravitational evolution on the BAO feature in the two-point correlation func-
tion [27]. Standard reconstruction requires using an estimated displacement field to move
the observed galaxies and overdensities back to their initial positions. This method, and
most subsequent reconstruction methods, estimate the displacement field from the observed
nonlinear density field [28–31], typically with first- or second-order LPT. Another class of
methods uses the framework of optimal transport theory to estimate the displacements, al-
though still from the late-time density [32–34]. Machine learning has also been applied for
such reconstruction [35–37]. Our approach, in which we predict the displacements from the
initial density field rather than the evolved field, would allow for sampling and forward mod-
eling of the initial conditions to perform reconstruction. Indeed, such methods have been
explored with LPT or PM codes as the forward model [38–40]. The advantage of this forward
modeling approach is that, in addition to powering BAO reconstruction, it can also enable
field-level inference, allowing constraints on cosmological parameters from the full field rather
than summary statistics such as the BAO scale or power spectrum.

In this work, we seek to learn how well the nonlinear displacement field can be estimated
from the initial density field using theory (i.e., LPT) and theory augmented with machine
learning. To this end, we train a convolutional neural network (CNN) to learn the nonlinear
displacement field from the initial conditions and compare the results to the displacement field
estimates from the first three orders of LPT. The paper is organized as follows. In Section
2, we summarize the theoretical and computational background behind the work and review
related work in the literature. Section 3 describes our methods and results for testing LPT.
Section 4 describes the architecture, training, and results of our CNN model. We conclude
and discuss avenues for future investigation in Section 5 .

2 Background

2.1 LPT

In the framework of LPT, which follows particle trajectories rather than the evolution of
density and velocity fields, the initial positions q are mapped onto the final Eulerian positions
x by a displacement field Ψ(q, t), as

x(q, t) = q +Ψ(q, t). (2.1)

The solution to Ψ(q, t) is expanded perturbatively. The first-order solution, known as the
Zel’dovich approximation [41], is given by

∇q ·Ψ(1)(q, t) = −D1(t)δ(q), (2.2)
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where δ(q) is the initial density field and D1(t) is the linear growth factor [9]. The first- and
second-order solutions are curl-free, so they allow for scalar potentials ϕ(1) and ϕ(2) obeying
the Poisson equations

∇2
qϕ

(1)(q) = δ(q), (2.3)

∇2
qϕ

(2)(q) =
∑
i>j

[
ϕ
(1)
,ii (q)ϕ

(1)
,jj (q)− (ϕ

(1)
,ij (q))

2
]
, (2.4)

where ϕ
(1)
,ij = ∂2ϕ(1)

∂i∂j .
Then, the first- and second-order displacement fields are

Ψ(1)(q, t) = −D1(t)∇qϕ
(1), (2.5)

Ψ(2)(q, t) = −D1(t)∇qϕ
(1) +D2(t)∇qϕ

(2), (2.6)

where D2(t) is the second-order growth factor and is approximately D2(t) ≈ −3
7D

2
1(t)Ω

−2/63
m .

Although the third-order displacement field is not curl-free, it can be expressed explicitly
as

Ψ(3)(q, t) = Ψ(2)(q, t) +D3(t)
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1

3
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(3a)(q)− 10

21
∇qϕ
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)
, (2.7)

where the scalar and vector potentials obey the Poisson equations
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, (2.8)
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∑
i
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∇ϕ

(2)
,i (q)×∇qϕ

(3)
,i (q)

]
, (2.10)

and the third-order growth factor is approximately D3(t) ≈ D3
1(t) [42].

Higher-order solutions have also been calculated, for example by [43]. There also exist
recursive relations for these higher-order solutions [44, 45]. However, while this perturbative
model is known to apply well at large scales, it is also known to generally become invalid
at small scales, where nonlinear effects from gravity dominate and the motion of particles
becomes nonperturbative [20]. This is true even for higher order LPT.

Differential operators can be computed with respect to both q and x; for simplicity,
we will henceforth refer to ∇q as ∇. We will also refer to fields in Fourier space as, for
example, δ̃(k). In Fourier space, the gradient operator becomes ∇f̃(k) = ikf̃(k) and likewise
the divergence operator becomes ∇ · f̃(k) = ik · f̃(k). We thus often move fields in and
out of Fourier space using the Fast Fourier Transform (FFT) and inverse FFT (IFFT). We
use the Python implementation of the FFTW library, pyFFTW1. The power spectrum of a
field f , which encodes the variance of fluctuations in the field at a given spatial frequency, is

Pf (k) =

〈∣∣∣f̃(k)∣∣∣2〉.

1https://github.com/pyFFTW/pyFFTW
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2.2 N -Body and Particle Mesh Simulations

Most models for large-scale structure formation point to nearly uniform initial conditions.
Thus, cosmological simulations for structure formation typically start with particles exactly
on a grid with periodic boundary conditions, so that the initial density field is homogeneous,
and perturbations in the initial velocity field drive subsequent evolution [46]. The initial
displacements and velocities are generally derived from the gradient of a potential field, with
the two most common cases being a Zel’dovich potential or a second-order LPT potential. For
the former case, Equation 2.3 is solved for ϕ̃(1)(k) in Fourier space, where δ̃(k) is generated
from the linear theory power spectrum as a Gaussian density field. This is in turn used to
solve Equation 2.4 for ϕ̃(2)(k) for the latter case. Then, for both types of initial conditions,
the particles are displaced according to Equations 2.5 and 2.6, respectively, and are also given
velocities that obey

v(q, t) =
dx

dt
= −D1(t)(af1H)init∇ϕ(1)(q) +D2(t)(af2H)init∇ϕ(2)(q), (2.11)

where the scaling factors are (afiH)init = a(d lnDi/d ln a)(d ln a/dt), and the second term is
only included for the second-order LPT initial conditions [47]. The simulation should start
with initial conditions at some suitably small scale factor a (equivalently, a suitably large
redshift z, since a = 1

1+z ), where perturbations are nearly linear, but numerical effects often
prevent simulations from starting at very early cosmic time [48].

N -body codes generate the initial conditions, δ̃(k), from the linear theory power spec-
trum, which is itself calculated via Boltzmann codes such as CAMB [49] or CLASS [50].
Typically, these codes are used to generate the matter power spectrum at z = 0, which is
then rescaled to the initial conditions redshift, zi, via

Pm(k, zi) =

(
D1(zi)

D1(z = 0)

)2

Pm(k, z = 0). (2.12)

At the most fundamental level, all N -body codes perform two functions at each time
step: they compute the gravitational field for the current configuration of particles, then move
the particles by integrating the equations of motion. Although there are several methods for
calculating the gravitational field, two common categories of algorithms are the hierarchical
tree algorithms and the PM codes [8]. At each step, PM codes calculate the density field on a
grid, solve Poisson’s equation for the gravitational field on the same grid, then interpolate the
gravitational field to the particle positions. The advantage of PM codes is that calculations
on an exact grid can be simplified and dramatically accelerated by performing them in Fourier
space, which also makes periodic boundary conditions automatic (and effectively mandatory).
The primary disadvantage is that spatial resolution is limited, because the approximated
gravitational force is generally inaccurate for scales below a few grid spacings.

On the other hand, the tree algorithms are not limited in resolution. These algorithms
work by recursively subdividing space into cells such that particles in a cell far from where the
force is to be calculated are grouped into one pseudoparticle, for which gravity is computed as
a single multipole expansion of the force [8, 51, 52]. Though not as fast as PM codes, the tree
algorithms are highly accurate in their force calculations. More recent codes have combined
these two algorithms, using the tree method for short-range scales and the PM method for
the long-range scales [53].

Modern N -body codes also generally incorporate fluid dynamics in addition to gravita-
tional physics. Unlike gravity, which is fundamentally treated the same in all N -body codes,
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the treatment of fluid dynamics can vary greatly. Two broad categories are the Eulerian
methods, which computes hydrodynamic variables on a grid, and the Lagrangian methods,
which follow hydrodynamic variables on particles that model fluid elements [8, 52].

For the full N -body simulations in this work, we use part of the HADES2 simulation suite
[54], which each contain 5123 particles in a periodic box of length L = 1000 h−1 Mpc along
each dimension. The HADES simulations use Zel’dovich initial conditions at zi = 99, and
a fiducial cosmology of Ωm = 0.3175, Ωb = 0.049, ΩΛ = 0.6825, ns = 0.9624, h = 0.6711.
These simulations are run with the Gadget-III code [52], which uses a hybrid tree and
PM algorithm for gravity (TreePM, [53]) and a Lagrangian smoothed particle hydrodynamics
(SPH) algorithm for fluid dynamics. The matter power spectra for the initial conditions are
calculated with CAMB.

For faster model training, we also desire simulations with a smaller number of particles.
To this end, we use the code pmwd3, which is a memory-efficient, GPU-compatible, differ-
entiable PM code [16]. With pmwd, we generate simulations with 1283 and 2563 particles
with the same cosmology, box size, and Zel’dovich initial condition parameters as the HADES
simulations. Although certainly not as accurate as the HADES simulations, pmwd is still
able to simulate the nonlinear effects of gravity well in just a matter of seconds.

2.3 BAO Reconstruction

Acoustic waves in the early universe imprinted a characteristic length scale in the matter
distribution, observable in the microwave background and in galaxy clustering [55–57]. In
large spectroscopic galaxy surveys, the BAO scale manifests as a peak in the two-point cor-
relation function of various matter tracers at around r ∼ 100 h−1 Mpc [58–62]. This BAO
peak is a powerful cosmic standard ruler that can be used to probe the expansion history of
the Universe [63, 64].

However, nonlinear gravitational evolution broaden and smear out the BAO peak in the
correlation function, which impacts the precision of its measurement [63, 65–68]. To mitigate
this loss of precision, [27] first proposed using the Zel’dovich approximation to approximate
the displacement field and to undo the effects of gravity, thereby sharpening the BAO peak.
This method, referred to as standard BAO reconstruction, has allowed for more precise mea-
surements of the BAO distance scale in observations [69–72].

Standard reconstruction is fundamentally different from LPT, including at first-order
(Zel’dovich approximation), as described in Section 2.1, because the source potential is pro-
vided by the evolved density field instead of the initial density field. In its most basic form,
standard reconstruction estimates the displacement field using

∇x ·Ψ(1)(x) = −δ(x), (2.13)

where all functions are computed with respect to the final observed galaxy positions x, then
shifts all galaxies by −Ψ(1)(x). Later reconstruction methods add iterative processes or higher
order LPT, [28, 31], and while these methods work well at linear scales, in general, they are
not fully correct applications of the physics of LPT, which relates the displacement field to
the initial density field [30].

Another class of reconstruction algorithms relies on forward modeling of the initial con-
ditions to the evolved, nonlinear field [12, 38–40]. These Bayesian approaches typically sample

2https://franciscovillaescusa.github.io/hades.html
3https://github.com/eelregit/pmwd
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sets of initial density fields and evolve them forward to explore which initial conditions are
consistent with the observed final density field. Since the forward model mapping the initial
field to the final field must be called many times, it should be computationally cheap and, in
general, differentiable. Thus, most of these methods rely on some form of LPT or PM mod-
els. However, LPT tends to exhibit poor accuracy at small scales, and PM models require
sufficiently small grid sizes and time steps to match N -body codes, which can also becomes
computationally expensive. A potential alternative is with a CNN, which, once trained, can
map from an initial to final field for very little computational cost.

2.4 Optimal Transport Displacement Field

Before discussing CNNs and our proposed method in more detail, we will briefly describe
a different type of reconstruction algorithm uses the mathematical framework of optimal
transport (OT) to estimate the displacement field from the observed galaxy distribution. The
OT problem defines a metric, the Wasserstein distance, as the minimum cost to transport
mass between two probability distributions [73–76]. In the context of large-scale structure,
OT can provide a framework to exactly reconstruct the displacement field given the final
positions with only the assumptions that the displacement field is the gradient of a scalar
potential and that the initial conditions are uniform [77, 78]. As discussed in Sections 2.1 and
2.2, the first assumption is explicitly true in first- and second-order LPT, and most models
of the early Universe suggest the second assumption is true as well, hence why cosmological
simulations generally start with a homogeneous initial density field and nonlinear evolution
driven by the initial velocity field.

Although the true nonlinear displacement field is not sourced by a single scalar poten-
tial, the displacement field estimated by the OT algorithm (henceforth referred to as the
OT displacement field, or Ψ(OT)(q, t) is well-correlated with the true Ψ(q, t) [46]. As with
standard reconstruction, OT reconstruction starts from a set of evolved positions x (e.g.,
observed galaxy positions or the final particle positions of an N -body simulation) and re-
turns a set of corresponding initial positions qOT(x). The algorithm is deterministic and
cosmology-independent, yielding a unique solution for any set of x. Recent versions of the
OT reconstruction algorithm, the so-called semi-discrete OT methods, demonstrate remark-
able increases in speed, from O(N3) to O(N logN), allowing for practical application to BAO
reconstruction [32, 33, 79].

It is important to note that, necessarily, Ψ(OT) ̸= Ψ(1) and Ψ(OT) ̸= Ψ(2), even though all
three are sourced by a scalar field. If we refer to the scalar field from which Ψ(OT) is sourced as
the OT potential, ϕ(OT)(q), then, by definition, x = qOT(x)+∇ϕ(OT). However, moving the
particles from their initial positions by ∇(−D1(t)ϕ

(1)(q)) or ∇(−D1(t)ϕ
(1)(q)+D2(t)ϕ

(2)(q))
would put them at their Zel’dovich-evolved or second-order LPT-evolved positions, not their
exact nonlinear positions x. Importantly, this means that OT reconstruction does not ex-
plicitly attempt to reconstruct δ(q) = ∇2ϕ(1)(q), even though a better estimate of δ(q) is
typically the goal of BAO reconstruction. However, ∇2ϕ(OT)(q) is generally well correlated
with δ(q), at least on BAO scales [46].

Regardless, it is still interesting to consider how well the OT displacement field can be
estimated from the initial conditions. It can be directly computed from an observed galaxy
distribution, so a cheap forward model for Ψ(OT)(q, t) can enable better reconstruction and
field-level inference.
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2.5 Convolutional Neural Networks

With the advent of powerful computational resources alongside a large influx of data in all
fields, deep learning has recently become a common tool for learning complex functions from
data, leading to models that often exceed human performance and traditional algorithms [80].

The basic model of deep learning is the neural network, which consists of layers that
sequentially perform some mathematical transformation on data. In a fully-connected neural
network, the output of each layer is

yi+1 = s(Wiyi + bi), (2.14)

where yi is the ni-dimensional input vector of layer i (and y0 is the input data to the entire
model), Wi is an ni×ni−1 weight matrix, bi is an ni-dimensional vector of additive biases, and
s is a nonlinear activation function. The activation function is essential to the performance
of the neural network; without it, the composition of layers would ultimately result in a
linear operator. By training the model on pairs of input and output data, with the goal
of minimizing a certain cost function, the weight and bias parameters of each layer can
be iteratively updated, typically through gradient backpropagation [81], so that the neural
network “learns” to transform input data into desired output data [37].

For high-dimensional, complex data, a fully-connected neural network will require many
layers, each with many features. Training such a model is generally intractable. For data on
a grid, such as images, CNNs resolve this issue with convolutional layers which hierarchically
extract local features rather than treating each pixel as an independent feature [82]. The input
to a convolutional layer, yi, consists of ni-dimensional vectors on a d-dimensional grid, so that
yi has dimension (N1, . . . , Nd, ni), with Ni denoting the lengths of the each grid axis. For
example, a displacement vector field on a 2563 grid would have dimension (256, 256, 256, 3)
while the divergence of such a field would have dimension (256, 256, 256, 1). For intermediate
layers, the vector dimension ni is typically referred to as the number of features or filters of
the layer. Then, the output of a convolutional layer is

y
(j)
i = s

(∑
k

w
(k,j)
i ∗ y(j)

i−1 + b
(j)
i

)
, (2.15)

where j, k are vector indices ranging from 1 to ni or ni−1, respectively, w(k,j)
i and b

(j)
i are

d-dimensional grids of kernel weight and bias parameters, respectively, and ∗ represents a
cross-correlation or convolution operator [37].

CNNs also commonly include pooling layers, which reduce spatial dimensions and thus
computational complexity, as well as fully-connected layers at the end [83]. However, for our
application, in which the input and output data have the same spatial dimension, such layers
are not implemented.

The extent of connectivity between pixels in the input and output grid to the CNN
is referred to as the receptive field. The receptive field is determined by the number of
convolutional layers as well as the kernel size, which is the length of each dimension of w(k,j)

i .
A typical kernel size is small relative to the input or output data so that the receptive field
is also small. In other words, each grid point of the output data is only affected by nearby
grid points of the input data [37]. For our use case, this is beneficial, because LPT already
performs well at large scales, so we only hope to improve it at smaller scales.
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2.6 Previous Literature

[84] provides a broad review of deep learning in cosmology and galaxy surveys, but their
section on large-scale structure is brief. Moreover, given the rapid development of the field,
many recent results are not included. Thus, in this section, we review some of the recent
literature in both modeling of the displacement field and applications of deep learning to
large-scale structure formation.

An early application of neural networks to reconstruction is presented by [85], who pro-
pose a differentiable forward model from the linear density field to the halo mass field, which
allows for maximum likelihood approaches to data fitting through gradient backpropagation.
Halo fields are typically incompatible with gradient-based methods, because halos are often
discretized and defined with non-differentiable methods. Their forward model is divided into
two components: first, the linear density field is evolved to the nonlinear density field with
a differentiable PM simulation, and then a neural network is trained to learn the mapping
from the nonlinear density field to the halo mass field. They further break down the neural
network into two models, one that predicts the halo positions and one that predicts the halo
masses. Despite relatively simple neural network architectures, with two hidden layers in each
fully-connected network, they are able to reconstruct the initial density field from the final
halo mass field with high correlation out to k ∼ 0.1 − 0.2 h−1 Mpc, and, when applied to
BAO reconstruction, they find improvement over standard reconstruction as well.

[86] apply CNNs to a similar task, mapping the nonlinear dark matter density field out-
put of N -body simulations to the spatial distribution of galaxies that are outputted by full
hydrodynamic simulations, which incorporate hydrodynamic forces and astrophysical pro-
cesses in addition to gravity, making them much more costly than N -body simulations. This
task encounters a problem in that the galaxy distribution is extremely sparse, which makes
training difficult. The solution to this problem is similar to the two-model neural network
architecture of [85]: they first train a classifier CNN that predicts the presence or absence of
galaxies in each output voxel (like the halo position predictor of [85]), then use that output
to train a second CNN to predict the number of galaxies in each voxel (like the halo mass
predictor of [85]). Importantly, the second CNN only outputs a galaxy number prediction for
voxels that are predicted to contain at least one galaxy by the first CNN. They test multiple
variations of CNN architectures and find improvements over standard methods of linking the
galaxy distribution to the dark matter distribution.

[18] attempt to emulate the entire N -body technique with Generative Adversarial Net-
works (GANs) [87], which is a machine learning framework in which a generator neural net-
work learns to generate new data sufficiently similar to the real training data to deceive a
second discriminator neural network. In effect, their model attempts to quickly generate real-
istic evolved z = 0 density fields. However, this is the only output of the model; there is, for
example, no corresponding initial density field, making applications to reconstruction non-
obvious. And. although the generated fields are visually indistinguishable from true N -body
fields, statistics such as the power spectrum are not fully in agreement with real simulation
data.

[21] implement a similar GAN model, but they use a more informed generator model.
Whereas [18] generate evolved density fields from latent vectors, which means that they have
no control over the input to the generator model, [21] provide a lognormal density field,
which are cheap approximations to simulated density fields, as input. As a whole, their
generator CNN augments the lognormal approximation to match the nonlinear density field
more closely. They find that using a standard loss function, such as the mean squared error,
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is insufficient, so they also add a discriminator model, turning it into a GAN framework.
Ultimately, their GAN model is able to produce realistic nonlinear density fields with overall
statistical properties that differ from the true values by less than ten percent at most scales.
[22] expand this model to encode a cosmology and redshift dependence. In addition, they
turn the discriminator model into a physics-informed one. Typically, the discriminator model
of a GAN consists of a standard feature-based CNN that classifies generator outputs as either
emulated or real. They add another path within the discriminator model that calculates
the difference between the power spectrum of the input lognormal density field, which are
the same as the power spectrum of the corresponding N -body simulation by construction,
and the power spectrum of the emulated density field, thus penalizing the generator for not
maintaining the power spectrum of its input.

The most relevant works to our proposed model are [17, 19, 88], who all attempt to
model the N -body displacement field using CNNs. In particular, they use a more complex
U-Net model [89], which typically consists of a contractive path of successive down-sampling
convolutional layers that reduce the data dimensionality followed by an expansive path of up-
sampling convolutional layers that increase the data dimensionality back to the original size,
as well as concatenation procedures that adds the features from the contractive path to the
expansive path at each resolution level. Such models result in many layers and thus possibly a
huge number of model parameters. [17] uses such a neural network to learn the displacement
field output of a PM model with 323 particles in a L = 128 h−1 Mpc box, with the Zel’dovich
approximation displacement field as the input. Their model, which contains a total of 15
convolutional layers, quite accurately predicts the nonlinear PM output at most scales. [88]
expands this idea to learn the displacement field outputs of full N -body simulations with
5123 particles in an L = 1000 h−1 Mpc box from the Quijote simulation suite [90], again
with the Zel’dovich displacement field as their input. In comparison to a benchmark code,
COLA (COmoving Lagrangian Acceleration) [91], which, like PM codes, is a fast N -body
approximation, their model output is well-correlated to the true nonlinear displacement field
to much smaller scales, with percent-level correlations to k ∼ 1 h Mpc−1. [19] again builds
off these two previous works to produce NECOLA (Neural Enhanced COLA), which takes
as input the COLA displacement field and predicts the nonlinear N -body displacement field.
Thus, while [17, 88] train their models to learn corrections to the Zel’dovich approximation,
NECOLA learns corrections to COLA displacements to match the N -body displacements.
Training on the Quijote simulations again shows that NECOLA outperforms even the model
of [88].

[92] expand such work in a different direction by training a CNN (or more accurately,
two CNNs) to learn the complete N -body phase space evolution, which includes not only
the displacement field but also the velocity field. Upon training their model, they test it on
physically idealized cases in which the solution can be solved for analytically or perturbatively,
including a spherically symmetric density field or isolated and coupled plane waves. Given
that such idealized test scenarios are far from the CNN training data, which consists entirely
of random Gaussian initial density fields, the level of success they observe with their model at
all scales indicates that the CNN is encoding some amount of physics. An important feature
of their CNN architecture is a global residual operation, by which the output of the CNN
is an estimate of the difference between the N -body displacement field and the Zel’dovich
displacement field. Since CNNs are local models, doing so allows the output to naturally
achieve better performance at large scales, where the Zel’dovich approximation is accurate
on large scales. [20] add cosmology dependence through additional model parameters that
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encode Ωm, allowing the model to effectively interpolate between a range of cosmological
parameters. In a similar manner, [93] extend the model to include redshift dependence with
new model parameters that encode D(z), which allows for calculation of particle velocities as
the time derivative of the displacements.

Rather than emulate the N -body simulation process at the field level, [94] train a CNN
to predict individual evolved dark matter halo masses. Thus, the input to their model is the
initial density field in a region around a dark matter particle, and the output is the mass of
the dark matter halo containing the initial particle at z = 0. That the model performs well
at predicting halo masses indicates that the CNN is successfully able to identify the features
in the initial density field that impact halo evolution. They also perform tests in which they
modify the input fields to remove anisotropic information by performing spherical averaging
at each voxel, but do not find that the model predictions are significantly less precise. They
are thus able to conclude that the anisotropies of the initial density field do not contain much
information relevant to the final halo masses that is not already encoded in the isotropic
features, indicating that improvements in models of halo collapse should be driven by the
addition of dynamical information rather than just the initial conditions.

The above works all, at some level, hope to achieve fast and accurate forward models
for large-scale structure formation. Machine learning has also been applied in the inverse
direction, which more closely resembles standard reconstruction. For example, [35, 37, 95]
all use CNNs to learn the initial density field directly from the evolved density field. [95]
takes as input the raw, nonlinear fields, and their reconstructions achieve stronger correlation
with the linear density field than standard reconstruction at some scales. [35, 37] both take
as input the reconstructed density field, which results in much tighter correlation to the
linear density field at all scales. They note that the improvement in using the reconstructed
density field over the unreconstructed density field is due to the fact that, as mentioned in
Section 2.5, CNNs can only learn local features within the receptive field, so reconstruction is
necessary for large-scale information. [37] applies only standard reconstruction for the CNN
input data, whereas [35] tests different reconstruction algorithms, although they find that the
CNN output is similar regardless of which specific reconstruction is used.

While [35, 37, 95] focus on the dark matter density field, [96] consider a hybrid recon-
struction technique for both dark matter halos and galaxies, which are both biased tracers of
the density field. As in [35, 37], they first apply standard reconstruction, then train a CNN
model to learn corrections at nonlinear scales. They implement a subgrid technique where
they only train the model to learn on smaller subcubes of the full data. This helps mitigate
GPU memory constraints without sacrificing performance, since standard reconstruction per-
forms well at large scales and thus the model only needs to improve reconstruction at small
scales. Additionally, as input to the CNN, they provide both the late-time tracer field and the
reconstructed density field, in case there is information that only one of the two contains. An-
other unique feature of their model is the loss function, which is calculated as a mean squared
error in Fourier space that is weighted such that modes in the range 0.08 ≤ k ≤ 0.5 h Mpc−1

are boosted to further prioritize nonlinear scales. Their model not only successfully extends
the range of k to which correlation between the reconstructed and true density fields is strong,
but also can be scaled to arbitrarily large volumes without retraining due to their subgrid
method.

[36] similarly attempt the inverse problem using the displacement field. Interestingly,
they use the model of [92], which, as described above, is a CNN that outputs the nonlinear
displacement field from the initial density field, to produce their training data. Then, they use
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the exact same model architecture of [92] to predict the linear Zel’dovich displacement field
(from which the initial density field can be derived) from the nonlinear displacement field. In
effect, they produce a new model to learn the inverse function of the original. However, their
CNN also performs well on some test data from full N -body simulations, indicating that it is
able to generalize from emulated training data.

Whereas [96] attempts to learn the initial density field from late-time observations of
biased tracers, several works also use machine learning to better reconstruct the late-time
density and velocity fields from such observations. [97] attempt to use simulated halo catalogs
to reconstruct the full density and velocity fields with a CNN. With their reconstructed fields,
they calculate the velocity-density coupling parameter β, which relates the peculiar velocity
field to the density field. Although they find a systematic bias in the estimated β values,
agreement with the fiducial value is generally within 1σ indicates that the reconstructed
density and velocity fields can provide useful constraints on cosmological parameters. In a
similar manner, [98] trains a CNN model to reconstruct the velocity field in real space from the
dark matter halo spatial distribution in redshift space, building off work by [99] to reconstruct
the velocity field from the dark matter field and by [100] to reconstruct the peculiar velocity
field from the dark matter halo distribution. Rather than dark matter halos, [101] uses
both the spatial distribution and the radial peculiar velocities of galaxies to reconstruct the
dark matter density field, with the goal of performing such reconstruction on sparse peculiar
velocity surveys. On the other hand, [102] uses only the galaxy spatial distribution from
dense redshift surveys to reconstruct both the dark matter density and velocity fields.

As noted above, our work is similar to the models of [17, 19, 88, 92] in that we attempt to
predict the displacement field with deep learning. However, we address other open questions
as well. Rather than augment an approximate N -body code like COLA, we augment theory
only, in the form of LPT. We test whether adding second-order LPT as an input to the network
improves performance. We also consider how simple we can make our CNN architecture while
still achieving strong correlations at a wide range of scales. While [88] and [19] use 180 and
100 Quijote simulation boxes for training, respectively, [37] uses 15 AbacusSummit [103, 104]
simulations and [35] uses just eight Quijote simulations. Thus, we also use a small number of
training data for accelerated training and comparable results. To better accommodate both
a simpler model and less training data, we also test whether it is easier for a CNN to learn
to predict the divergence of the N -body displacement field, which is a scalar field.

3 LPT Tests

We first assess how well LPT can estimate the nonlinear displacement field.

3.1 Data

We perform these tests on the HADES N -body simulations, described in Section 2.2. The suite
we utilize contains 20 boxes of dimension L = 1000 h−1 Mpc with 5123 particles. Each box
starts with unique initial conditions generated from the same linear theory power spectrum
(i.e., the same underlying cosmology). The data snapshots, containing all particle positions
and velocities, are provided at redshifts of z = 99 (the initial conditions), z = 3, z = 2, z = 1,
z = 0.5, and z = 0.
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3.2 LPT Code

The nonlinear displacement of each particle, which we refer to as Ψ(True), is calculated as

Ψ(True)(q, z) = x(q, z)− q, (3.1)

where q are the initial particle positions at z = 99 and x(q, z) are the evolved positions at
some later redshift. Periodic boundary conditions of the box are taken into account, so that
the maximum displacement for a particle is 500 h−1 Mpc in each component.

Computing both the nonlinear displacement field and the initial density field from the
the initial snapshot of particle positions requires placing the particles on a grid. Common
mass assignment schemes are the Nearest Grid Point (NGP), Cloud-in-Cell (CIC), and Trian-
gular Shaped Cloud (TSC) mass-assignment schemes. Employing these methods introduces
artifacts into the density field power spectrum, which can theoretically be removed with cor-
rection factors. However, even with these corrections, we find that the power spectra of the
initial density field from all of these mass assignment schemes are slightly inconsistent with
the linear theory power spectrum, calculated with CLASS4 [50]. We thus use the initial velocity
information to better compute the initial density field.

We trace back the particles, moving in the negative velocity direction, until they each
lie exactly on a grid point, so that the gridded displacement field can be easily calculated
by assigning to each grid point the full nonlinear displacement of the respective particle.
However, moving particles back onto an exact grid enforces a homogeneous density, so that
the initial density field is lost. Instead, since the initial conditions snapshot includes the
particle velocities, we calculate the gridded initial velocity field, then utilize that to get the
initial density field.

Since HADES uses Zel’dovich initial conditions, combining Equation 2.11 and 2.3 gives
the divergence of the initial velocity field as

∇ · vinit(q) = −(af1H)initδ(q). (3.2)

In Fourier space, which we move in and out of using the Fast Fourier Transform (FFT) and
inverse FFT (IFFT), the modes of the initial velocity field are thus related to those of the
initial density field as ṽinit(k) =

ikδ̃(k)
k2

. Combining this with Equation 2.2 gives the Zel’dovich
displacement at an evolved redshift z as

Ψ̃(1)(k, z) =
D1(z)ṽ(k)

D1(z = 99)(af1H)init
. (3.3)

We calculate the Zel’dovich displacement and initial density fields from the gridded initial
velocity field using the above equations.

In theory, the power spectrum of the initial density field calculated in this manner should
match the linear theory power spectrum at a redshift of z = 99, particularly when averaging
over many simulation boxes, which reduces cosmic noise. Figure 1 shows that there is indeed
a good match across most scales, with a power spectrum ratio near unity, and that the
numerical mass assignment schemes introduce artifacts at scales approaching the 1D Nyquist
frequency,

kN = π
Ndim

Lbox
, (3.4)

4http://class-code.net/

– 12 –

http://class-code.net/


10 2 10 1 100

k [h Mpc 1]

0.94

0.96

0.98

1.00

1.02

1.04

1.06
P

(k
)/P

Li
n(

k)
Initial Conditions vs. Linear Theory Power Ratio

vinit

CIC
TSC

Figure 1. Square root of the ratio of the initial density field power spectrum, calculated from the
gridded velocity field (red) or a numerical mass assignment scheme (CIC - green, TSC - blue), to
the linear theory power spectrum. The shaded gray area represents

∣∣∣√Pδ/PLin − 1
∣∣∣ ≤ 0.01. The

maximum frequency is the Nyquist frequency, kN = 1.61 h Mpc−1. Note that using an NGP mass
assignment would result in a completely homogeneous density field.

where Ndim is the grid dimension and Lbox is the physical box length; for the HADES sim-
ulations, where Ndim = 512 and Lbox = 1000 h−1 Mpc, the Nyquist frequency is about
kN = 1.61 h Mpc−1. However, even for the gridded initial velocity field method, there is
a strange artifact at k ≳ 1 h Mpc−1, where the ratio begins to fall below unity. This is
discussed in more detail in Appendix A.

Solving Equation 2.3 in Fourier space gives ϕ(1)(k), from which we can recursively solve
Equations 2.4, 2.8, and 2.9 for the second- and third-order scalar potentials, then the second-
order LPT displacement field and the curl-free component of the third-order field.

Lastly, we compute the OT displacement field. The OT displacement field can be cal-
culated directly from observations, and it has the advantage of being sourced by a scalar
potential, so it is also beneficial to develop a forward model for its cheap estimation from
the initial conditions. For each HADES box, the semidiscrete OT reconstruction algorithm
produces a set of estimated initial particle positions, qOT, from the output z = 0 snapshot
of final particle positions, x. The algorithm has been previously run and its output saved
for the 20 HADES boxes that we consider [79]. We calculate the OT displacement of each
particle as

Ψ(OT)(q) = x− qOT(x), (3.5)

again taking into account periodic boundary conditions. Unlike for the Ψ(True), for which we
can take the initial positions q to lie on a grid, neither x nor qOT can be placed exactly on a

– 13 –



Figure 2. Corner section in the z = 0 plane of true displacement field (black arrows), first-order
LPT displacement field (red arrows), and second-order LPT displacement field (orange arrows). The
background plot shows the initial density field, δ(q).

grid, so we must utilize a numerical mass assignment scheme. To keep consistency with the
other displacement fields, we grid with respect to qOT. However, we find boxes where NGP,
CIC, and TSC mass assignment schemes all lead to some grid points with zero displacement
(i.e., there is no particle close enough to those grid point), which is problematic. We thus use
a piecewise cubic spline (PCS) for mass assignment, which works well.

For each of the above displacement fields, we also take a divergence to get a scalar field,
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and we refer to these as

Θ(True)(q, t) ≡ ∇ ·Ψ(True)(q, t), (3.6)
Θ(1)(q, t) ≡ ∇ ·Ψ(1)(q, t) = −D1(t)δ(q), (3.7)

Θ(2)(q, t) ≡ ∇ ·Ψ(2)(q, t), (3.8)
Θ(3)(q, t) ≡ ∇ ·Ψ(3)(q, t), (3.9)
Θ(OT)(q) ≡ ∇ ·Ψ(OT)(q). (3.10)

For each simulation box, we calculate the displacement fields (except the OT displacement
field) up to both z = 0 and z = 1, the latter of which may be more relevant for observational
surveys. We therefore calculate nine displacement vector fields plus the divergences of all of
these fields per box. We average all results over the 20 HADES simulation boxes.

We note that the second- and third-order LPT terms contain quadratic or higher nonlin-
earities, and so multiplying numerically, as is required to solve the relevant Poisson equations,
will introduce aliasing [42]. This can be mitigated by zero-padding and performing convo-
lutions in Fourier space; however, this dramatically increases the memory required for each
field. Furthermore, the effect of aliasing on the displacement field is small, especially at most
relevant scales. Thus, we do not perform any de-aliasing.

In addition to computing the power spectra for each field, we calculate the normalized
correlation coefficients between various fields, which is given by

rAB(k) =

〈
Ã(k)B̃(k)∗

〉
√
PA(k)PB(k)

. (3.11)

While the ratio of power spectra primarily assesses correlation in amplitude at each spatial
frequency, the normalized correlation coefficients instead gives correlation in phase.

3.3 Results

Figure 2 compares a small 2D slice of the true displacement field to the Zel’dovich and second-
order LPT displacement fields. Though the arrows do not show the third dimension, there
appears to be a slight qualitative improvement in estimating the true displacement field when
increasing from first- to second-order LPT.

Figure 3 compares the power spectra of the divergences of the various displacement fields
at z = 0 and z = 1, as well as the linear theory power spectrum, calculated with CLASS.
We see that all the power spectra agree at the largest of scales, but each of the estimator
power spectra diverges, at varying speeds, from the ground truth as we approach smaller
scales. Also, the power spectra are all closer together, even at small scales, for z = 1, which
is expected since the particles have had less time to evolve through gravity in this case.

A clearer comparison is shown in Figures 4 and 5, which display the square root of the
divergence power spectrum ratios between pairs of displacement fields or the linear theory
power spectrum. In the panel depicting the ratio between the estimated displacement fields
and the true displacement fields, we can see that the Zel’dovich and second-order LPT power
spectra agree in amplitude with the true power spectrum to within a few percent for k ≲
0.2 h Mpc−1 at z = 0, and for slightly smaller scales at z = 1. Interestingly, it appears that
the correlation in amplitude tends to worsen upon increasing the order of LPT. For both the
z = 0 and z = 1 case, there is also an unexpected slope to the ratio at large scales, where
the ratio does not remain flat around unity but rather starts above unity at the lowest k
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Figure 3. Power spectra of the divergences of the true, Zel’dovich, second- and third-order LPT, and
OT displacement fields for both z = 0 (top) and z = 1 (bottom). The linear theory power spectrum
is also shown for comparison. The vertical dashed line marks k = 0.2 h Mpc−1. Note that the OT
displacement field is only calculated for the z = 0 evolved field.

and decreases as k increases until the nonlinear scales are reached, at which point it quickly
diverges upward. This feature is most prominent in the Zel’dovich and second-order LPT
displacement fields.

Comparing the middle and bottom panels of Figure 4 reveals that the LPT fields are
worse at estimating the OT field than the true field, with the divergence in power ratio
occurring at larger scales.

Figure 6 shows the normalized correlation coefficients between pairs of displacement field
divergences. We again see that the correlation is strong at large scales, then falls off at small
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Figure 4. Square root of the ratio of the different displacement field divergence power spectra to the
linear theory power spectra (top), PΘ(True)(k) (middle), and PΘ(OT)(k) (bottom) for z = 0. For the
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of unity. The shaded gray area represents
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scales. Here, we can clearly see improvement as go from the Zel’dovich approximation to
second-order LPT, where the range of k at which the correlation is near unity extends much
further into the range of nonlinear scales for both z = 0 and z = 1. This is also true as we
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Figure 5. Same as the top two panels of Figure 4, but for z = 1, excluding the OT displacement
field.

go from second- to third-order LPT, but the marginal improvement is much smaller. We also
see that the strongest correlation is between the true and OT displacement fields, although
the correlation between the LPT and OT displacement fields is weaker than that between the
LPT and true fields.

Taken as a whole, these results suggest that while LPT performs well at estimating
the displacement field at low k, it breaks down at high k, and adding additional terms to
the expansion may not improve convergence at these nonlinear scales. The question that
naturally arises is then whether there are ways to improve the displacement field estimation,
such as by augmenting LPT with machine learning.

4 CNN

In this section, we describe the CNN model that we train to better predict the true displace-
ment field.

4.1 Data

The primary challenges of training such a deep learning model are GPU memory constraints.
Training on a large number of particles requires dividing the simulation cubes into smaller
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Figure 6. Normalized correlation coefficients between different displacement field divergences at
z = 0 (top) and z = 1 (bottom). At z = 0, the dashed lines denote correlations between LPT
displacement fields and the OT displacement field, whereas solid lines denote correlations between
the nonlinear displacement field and either LPT or the OT displacement field. At z = 1, we do
not compute an OT displacement field. The vertical dashed line marks k = 0.2 h Mpc−1 and the
horizontal dashed line marks a value of unity, which is the maximum of the normalized correlation
coefficient.

subcubes. To demonstrate that we can learn the displacement field with a CNN in principle,
we start with smaller simulations, then show that our approach can be easily scaled up.

We generate simulations with pmwd, described in Section 2.2, with both 1283 and 2563

particles. We keep the background cosmology the same as in the HADES simulations, fix
the box size at L = 1000 h−1 Mpc, and use Zel’dovich initial conditions. We only consider
simulations evolving from z = 99 to z = 0.

The model we implement, described below, is flexible in what it takes as input and
output. Thus, for each simulation we save the initial density field, the first- and second-order
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LPT potentials, the true displacement field, and the first- and second-order LPT displacement
fields. These are all generally calculated in the same manner as with the HADES simulations.
To test that our code to generate the LPT displacement fields works properly, we also generate
Zel’dovich and second-order LPT “initial conditions” at z = 0 with pmwd, and find that they
agree.

4.2 Model

At its core, our model takes as input an N3 × n grid, where N is the number of grid points
along each spatial dimension and n is the number of scalar fields in the input.

4.2.1 1283 Grid

For the smaller case of the simulations with 1283 particles, we are able to perform training on
the full cubes. The input grid passes through nine convolutional layers, with each intermediate
layer having 32 filters. All but the final convolutional layer are followed with a hyperbolic
tangent activation function, and all layers have a kernel size of 5. A convolution with a
kernel size of 5 reduces the size of the grid by 4 in each spatial dimension, so the output has
dimension (N − 36)3 × n. To reconstruct the full output, we expand the input field with
periodic boundary conditions. Thus, the input has dimension 1643 × n and the output has
dimension 1283 × n.

We focus on two possibilities, both with n = 3. In the first model, we input the second-
order LPT displacement field, so that the three input scalar fields are the three components
of the vector field. We refer to this as the vector model. In the second model, the three scalar
field inputs are the initial density field and the first- and second-order LPT potentials. We
refer to this as the scalar model.

For the vector model, we train to learn the true vector displacement field, so that the
output of the model is an 1283×3 grid. For the scalar model, we train to learn the divergence
of the true displacement field, so that the output of the model is an 1283 × 1 grid.

There is ultimately much freedom in what exactly the input fields are. We naturally
choose to map vector fields to vector fields and scalar fields to scalar fields. In both of our
models, we choose to provide fields derived from second-order LPT because we want our
model to be physically informed. We could just as easily input, for example, the Zel’dovich
displacements into the vector model, or replace the second-order LPT potential with its
Laplacian in the scalar model. Exploring which physically motivated inputs enable the model
to perform best is a possible avenue of future investigation.

In the final convolutional layer, we concatenate the three scalar input fields to the output
of the previous layer, so that the number of filters becomes 35. This concatenation, inspired
by the skip connections of U-Net models, potentially helps retain some of the large-scale
features that LPT is able to predict well and that may be lost after multiple convolutional
layers, which are local functions. After the previous eight convolutional layers, the grid spatial
dimensions have been reduced from 1643 to 1323, so we remove the appropriate boundary
pixels of the input fields before concatenation.

The exact hyperparameters of our model, such as the kernel size and number of layers,
are chosen heuristically; finer tuning may be required to achieve optimal performance. Our
model architecture is summarized in Table 1.
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Layer Kernel Size Num. Filters Activation Input

1 5 32 tanh 1643 × 3(
δ(q), ϕ(1)(q), ϕ(2)(q)

)
or Ψ(2)(q)

2 5 32 tanh 1602 × 32

3 5 32 tanh 1562 × 32

...
...

...
...

...

8 5 32 tanh 1362 × 32

9 5 32 — 1322 × 35
Filters + Input

Output — — — 1283 × 1 or 1283 × 3

∇ · Ψ̂(q) or Ψ̂(q)

Table 1. Summary of CNN architecture for simulations with 1283 particles.

4.2.2 Scaling to Larger Grids

We encounter GPU memory constraints even when attempting to model simulations with
2563 particles. We thus use a subcube method to scale to these larger simulations, allowing
us to keep the exact same model architecture as summarized in Table 1.

At each iteration of training, we select a subcube of shape 1643 × 3 from the input field
and the corresponding subcube of shape 1283×n from the output field. In practice, to choose a
random subcube while keeping the periodic boundary conditions of the full simulation, we first
roll the input and output grids in each spatial dimension by a random integer value (possibly
different in each dimension, but the same for the input and output grids). We then expand
the input spatial grid with periodic boundary conditions, giving it shape 2923. We select
the corner subcube of this grid with shape 1643. The corner subcube of the (non-expanded)
output grid with shape 1283 is the corresponding output subcube.

The model is trained only on these subcubes, which are produced on the fly at each
iteration. Once the model is trained, we can use it to reconstruct the full output field with
spatial shape 2563 by reconstructing eight non-overlapping subcubes. To do so, we must
construct the eight corresponding, overlapping subcubes of the expanded input fields. To do
so, we again expand the input spatial grid to have shape 2923. We then select subcubes of
this grid with shape 1643. There are eight such subcubes with that each share exactly one
corner with the full grid. The overlap between such subcubes is at most 36 in each dimension.
The model outputs of these eight subcubes each have spatial shape 1283 and can be combined
to reconstruct the estimate of the full output field. A visual schematic of this procedure in
2D is shown in Figure 7.

This procedure can, in principle, be easily generalized to larger simulations as well.

4.3 Training

We train our model in JAX [105] using the Flax [106] and Optax [107] libraries. Training in-
volves learning the optimal convolutional kernel weights and bias parameters through gradient
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Figure 7. Schematic of the procedure to reconstruct full 2563 output grids from smaller subcubes,
showing a 2D slice of the spatial dimensions. The input grid is expanded, with periodic boundary
conditions, from 2563 to 2923. It is divided into eight overlapping subcubes of size 1643, which are
inputted into the CNN. Four of these are visible in the 2D slice as the dashed red squares, with the
one at the bottom left corner shaded in light red. The outputs are eight non-overlapping subcubes,
each of size 1283, which combine to create the full output grid. The one at the bottom left corner is
shaded in dark red.

backpropagation on a loss function. We use the mean squared error (MSE) loss function,

L =
1

Nsim

∑
i

1

Ngrid

∑
q

(
f̂i(q)− fi(q)

)2
, (4.1)

where f̂(q) and f(q) are the model prediction and true values, respectively, of either Ψ(q) for
the vector model or ∇ · Ψ(q) for the scalar model; Ngrid is the number of grid points in the
output field, which are indexed by q; and Nsim is the number of training simulations, indexed
by i. In practice, we do not compute the loss over all simulations, but rather use a stochastic
gradient descent (SGD) with momentum [108], which reduces training loss at each step by
computing the gradient of the loss over a smaller random subset of the full training set. For
the 1283 grid, the smaller subset is one random training simulation; for larger grids, it is a
random subcube of a random training simulation. Thus, in all cases, at each training step,
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we load in a full simulation into CPU memory, but only load in a 1643 × 3 grid as input and
a 1283 × n grid as output into GPU memory.

This loss function is standard in many neural networks. However, [19, 88] both modify
the loss function and instead use

L = ln
(
LδL

λ
Ψ

)
, (4.2)

where Lδ is the MSE loss on the density field, LΨ is the MSE loss on the displacement field,
and λ is a weight parameter. Thus, LΨ is equivalent to our loss function for the vector model,
whereas Lδ is entirely different. Using such a loss function requires adding an extra field, the
nonlinear density field at z = 0, into the output. Furthermore, this requires calculating the
estimated nonlinear density field from the CNN estimate of the displacement field. For the
scalar model, this is feasible but possibly expensive, since this would require calculating the
displacement field from its divergence. Even for the vector model, this requires computing the
evolved particle positions x and calculating the density field with a mass assignment scheme.
[19, 88] use the CIC scheme, which is differentiable. While implementing such a loss function
may have a benefits, we choose to keep a simpler MSE loss function, which we find performs
well.

Before performing training, the training data set is normalized such that the mean value
over all pixels in the training set is zero and the variance is unity. The normalization values
are recorded so that validation and testing data can be normalized as well. We use a learning
rate of 0.001 and a SGD momentum parameter of 0.9. For the simulations with 1283 particles,
we train both a vector and a scalar model (henceforth referred to as the 1283 vector and scalar
models, respectively). The simulations with 2563 particles are used only to show that our
model is scalable, so we train only a scalar model (the 2563 scalar model). For all models,
we train on two simulations. For the scalar models, we train for 10000 steps. For the vector
model, we train for 5000 steps, although this is only to accelerate the training, and it may be
preferable to train for more. To ensure that the model is not overfitting the training data,
we check the loss on a validation simulation every 50 steps and find that it aligns with the
training loss well. Each model was trained on a GPU, either a NVIDIA RTX A5000 or an
NVIDIA A100, on the Yale Grace cluster for approximately three hours. Heuristically, it
seems that any GPU with at least about 15 GB of VRAM is sufficient to train the model
without encountering memory constraints.

4.4 Results

The trained models are tested on 17 simulations that differ in the initial conditions from the
training and validation simulations. For all models, we compare the divergences of the true
and estimated displacement fields. For the scalar models, this is just the output. For the
vector model, we could also compare the individual components of the displacement fields,
but we choose to focus on just the divergence in this work.

Figure 8 shows a 2D slice of a randomly selected 2563 scalar model output. Compared
to the true displacement field divergence in the left panel, the model prediction is visually
indistinguishable. The residuals, shown in the right panel at a narrower color scale, are nearly
flat, which is promising.

More important than a visual inspection are the power spectra and their derived sum-
mary statistics. The following are all averaged over the test simulations. Figure 9 compares
the power spectra of the divergences of the displacement field output from both the 1283 scalar
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Figure 8. 2D slice of the divergence of the true displacement field (left), the divergence of the 2563

scalar model estimate of the displacement field (middle), and the residuals between the two (right),
at an arbitrary, but consistent, color scale. These are shown for a randomly selected test simulation
with 2563 particles.

and vector models to the true value, as well as that estimated by first- and second-order LPT.
Figure 10 compares the square root of the ratio between the power spectra of each of the esti-
mated displacement field divergences and the true displacement field divergence, and Figure
11 compares the normalized cross correlation between the estimates and truth. In all cases,
we see that the CNN output far outperforms first- and second-order LPT. In the 1283 vector
model, we see reconstucted displacement fields with divergences that are highly correlated
with the true value (rΘTrueΘCNN(k) > 0.99) for k ≲ 0.15 h Mpc−1, which is slightly less than
half the Nyquist frequency of kN = 0.402 h Mpc−1 for these simulations. By comparison, first-
and second-order LPT only maintain such a strong correlation out to k ≲ 0.06 h Mpc−1. Fur-
thermore, we observe

∣∣∣√PΘ(CNN)(k)/PΘ(True)(k)− 1
∣∣∣ ≤ 0.01 out to similarly nonlinear scales,

but for both first- and second-order LPT,
∣∣∣√PΘ(LPT)(k)/PΘ(True)(k)− 1

∣∣∣ ≤ 0.01 only for for

k ≲ 0.015 h Mpc−1. This demonstrates that our model extends the range of scales for which
the amplitude is tightly correlated by about a factor of 10 compared to LPT.

In the 1283 scalar model, we observe tighter correlations at even more nonlinear scales,
with both rΘTrueΘCNN(k) > 0.99 and

∣∣∣√PΘ(CNN)(k)/PΘ(True)(k)− 1
∣∣∣ ≤ 0.01 out to k ∼

0.2 h−1 Mpc. Whether this is because the divergence of the displacement field, which is
a scalar field, is easier to learn or because the model architecture and training is better
suited to this case (note, for example, we used double the number of steps for training the
scalar model) is an open question. Regardless, it is promising that both models provide such
significant improvements over LPT.

Figures 12 and 13 show the same power spectrum ratio and normalized correlation
coefficient plots but for the 2563 scalar model. In this case, we again see that the CNN
outperforms LPT at small scales. The 2563 scalar model shows a tight correlation with the
true displacement field divergence value in both phase (rΘTrueΘCNN(k) > 0.99) and amplitude(∣∣∣√PΘ(CNN)(k)/PΘ(True)(k)− 1

∣∣∣ ≤ 0.01
)

for k ≲ 0.3 h Mpc−1, which is approximately double
the k values to which the 1283 vector model maintains similarly strong correlation. Note that
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Figure 9. Power spectra of the divergences of the true, CNN prediction, Zel’dovich, and second-order
LPT displacement fields for the 1283 vector CNN model (top) and the 1283 scalar model (bottom).
The power spectra are averaged over 17 test simulations.

the Nyquist frequency also doubles as we go from 1283 to 2563 grid points. In this case, LPT
only maintains such tight correlations out to k ≲ 0.1 h Mpc−1. This demonstrates that our
model and training scheme is easily scalable to larger simulations.

There are some noticeable deviations from a power spectrum ratio of unity at the largest
scales for both the 1283 scalar model, seen in the bottom panel of 10, and the 2563 scalar
model, seen in Figure 12. In the 1283 scalar model, the ratio rises above unity at low k,
and in the 2563 scalar model, the ratio fluctuates above and below. Although these effects
are all at the subpercent level, the most likely cause is the fact that CNNs are local models
with a limited receptive field per pixel. That this effect is not observed in the 1283 vector
model may suggest that there is somehow more large-scale information encoded locally in the
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Figure 10. Square root of the ratio of the power spectra of the divergence of each estimated displace-
ment field to that of the true displacement field for the 1283 vector CNN model (top) and the 1283

scalar model (bottom), averaged over 17 test simulations. We take the average of the ratios rather
than the ratio of the averages. The shaded area around each line represents a 1σ standard deviation
range around the mean. The horizontal dashed line marks a ratio of unity and the shaded gray area
represents

∣∣∣√PΘ/PΘ(True) − 1
∣∣∣ ≤ 0.01.
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Figure 11. Normalized correlation coefficients between the divergence of each estimated displacement
field to and that of the true displacement field for the 1283 vector CNN model (top) and the 1283

scalar model (bottom), averaged over 17 test simulations. The shaded area around each line represents
a 1σ standard deviation range around the mean. The horizontal dashed line marks a value of unity,
which is the maximum value of the normalized correlation coefficient. The shaded gray area represents
rΘ(True)Θ(B) ≥ 0.99.
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Figure 12. Same as 10, but for the 2563 scalar CNN model. Here, the dark horizontal dashed line
marks a ratio of unity and the lighter horizontal dashed lines mark

∣∣∣√PΘ/PΘ(True) − 1
∣∣∣ = 0.01.

second-order LPT displacement vector field than in the LPT potentials.

That the effect seems worsened as we increase the grid size from 1283 to 2563 is likely
because of the CNN receptive field. Indeed, by not altering the architecture between the
1283 and 2563 models, we inherently reduce the physical receptive field of the 2563 models.
This is because the receptive field in units of grid points remains fixed, since the kernel size
and number of layers is fixed; however, grid spacing in the simulations with 2563 particles is
half that in the simulations with 1283 particles, because the number of grid points in each
dimension is double while the box size remains the same at L = 1000 h−1 Mpc. It may thus
prove beneficial to increase either the kernel size or the number of layers, or perform strided
convolutions, to maintain fidelity at large scales.

Despite being the closest to our work in principle, it is difficult to directly compare our
models to that of [88], which is significantly more complex in its architecture, since they use the
Zel’dovich displacement as input and 5123 particles in the same L = 1000 h−1 Mpc box size.
Additionally, they train the model to learn only the corrections to the Zel’dovich displacement
(i.e., Ψ(True)−Ψ(1)), which may help at larger scales. However, from their Figure 1, it appears
that they are able to maintain tight correlation between the CNN estimated displacement field
and the true displacement field out to k ≲ 0.8, although this is difficult to confirm given the
scale of their plot. If we extrapolate from our scalar models, in which the maximum k at which
there is tight correlation increases from ∼ 0.15 h Mpc−1 to ∼ 0.3 h Mpc−1 as we increase
from the 1283 model to the 2563 model, we might expect similar performance to [88] for a
5123 model.
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Figure 13. Same as 11, but for the 2563 scalar model. Here, the dark horizontal dashed line marks
a value of unity and the lighter horizontal dashed line marks rΘ(True)Θ(B) = 0.99.

5 Conclusions

In this work, we have first shown the LPT, even to higher-orders, is unable to accurately
predict the nonlinear displacement field at small scales. Then, to resolve this, we have trained
deep learning models to augment LPT at these nonlinear scales. Our models far outperform
LPT alone in estimating either the displacement vector field or its divergence, and at different
resolutions, demonstrating that there is more small-scale information encoded in the initial
conditions than LPT itself is able to extract.

There are a plethora of directions to take future continuations of this work. One of our
primary initial goals was to estimate the OT displacement field or potential, which can be
calculated from an observed galaxy distribution. A cheap forward model for the OT field
could prove valuable for improved reconstruction and field-level inference. Apart from model
specifics, training to learn the OT field was to be the main distinguishing factor between our
work and previous work using CNNs to learn the displacement field. We thus plan to train a
similar CNN to estimate the OT potential from the initial conditions. Although producing the
OT potential from PMWD simulations is computationally cheap, it might also be beneficial
to scale the model to the HADES simulations, with 5123 particles, since we already have OT
displacement fields computed for the HADES simulations, as shown in Section 3,

We also hope to test the model on simulations generated with different cosmologies. This
may manifest itself in a variety of ways. It would be worthwhile to first try to running the
models we have already trained on test simulations with different cosmological parameters,
though it is unlikely that the model will perform well on such a test, especially if the parame-
ters are changed significantly from the fiducial values used for training. A second option would
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be to simply add simulations with different cosmologies to the training data. These could be
easily generated with pmwd, in which case we could also modify the transfer code used to
generate the initial conditions, or we could use the Quijote suite of N -body simulations [90],
which are the successors to HADES and which contain a set of simulations generated with a
Latin hypercube of varying cosmological parameters. A more complex method would be to
modify the CNN architecture itself and add parameters than encode, for example, Ωm, in a
manner similar to [20].

As always with deep learning, adjustments can always be made the model architecture.
Unlike many of the models discussed in Section 2.6, we attempt to keep our CNN architecture
as simple as possible. However, there are still ways to possible improve performance at
both small and large scales without drastically increasing the number of model parameters.
Increasing the number of layers or the kernel size could help improve performance at large
scales for simulations with a greater number of particles. Rather than a concatenation step
at the input of the final convolutional layer, we could implement a global residual operation
similar to that of [88, 92], in which case the output of the CNN will not be an estimate for
the displacement field or its divergence but rather an estimate for the correction from the
Zel’dovich (or second-order LPT) displacement field to the true displacement field. This may
also help the model on large scales. It may also be useful to consider what the best physically
motivated input fields would be. In this work, we use

(
δ(q), ϕ(1)(q), ϕ(2)(q)

)
for the scalar

model and Ψ(2)(q) for the vector model, but other fields may offer some improvement. For
example, it may be beneficial to replace ϕ(2)(q) with its Laplacian, which is more immediately
connected to Ψ(2)(q). Testing the addition of the third-order LPT displacement or its scalar
and vector potentials would also be interesting; if there is no improvement, it may indicate
that the relevant information for the true displacement field is saturated in the lower orders
of the LPT expansion. We could also modify the loss function to, for example, be weighted
in Fourier space, as do [96]. This would penalize errors at small scales more than those at
large scales.

We would also like to be able to better understand what the model is learning. Neural
networks are generally thought of as black box functions, but there have been developments
in providing model explanations, for example, through heatmaps that visualize which areas
of an input image are most important to a model output [109]. Another approach would be
to perform tests of the model on idealized initial conditions with analytic solutions, which is
done by [92]. An entirely different idea would be to change the model to a have a structure
based on perturbative physics. In such a model, we might treat the filters of a convolutional
layer as physical fields in their own right. Then, rather than nonlinearities in the neural
network arising from the activation function, we could multiply the “fields” element-wise in
real space between convolutional layers, thus mimicking the structure of higher-order LPT,
in which derivatives of lower-order potentials are multiplied.
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A Further Considerations

A.1 HADES Deviations from Linear Theory Power Spectrum

In the initial density fields of the 20 HADES boxes, calculated from the gridded initial velocity
field as described in Section 3.2, several show an unexpected deviation from the linear theory
power spectrum at the smallest of scales. Figure 14 shows that while boxes 0 through 4
maintain strong agreement between the initial density field power spectrum and the linear
theory power spectrum out to the Nyquist frequency of k = 1.61 h Mpc−1, the rest of the
boxes have a slight loss of power in the initial density field at small scales, at k ≳ 1 h Mpc−1.
This explains the similar downward curve at small scales observed in the average ratio in
Figure 1. We are unable to determine any reason for this. This is especially puzzling given
the sequential ordering of the simulation boxes.
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Figure 14. Same as Figure 1, but for each individual HADES box rather than the average over all
boxes. Only the initial density field computed from the gridded velocity field (the red line of Figure
1) is shown.
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