Feeding the Central Molecular Zone

Andy Nilipour

Mentors: Juergen Ott, Brian Svoboda, David Meier

Outline

Background

Properties

Central Molecular Zone (CMZ)

Central Molecular Zone (CMZ)

Dense, warm, and turbulent

CMZ Inflows

Bar potential drives inflows towards the CMZ

CMZ Inflows

Overshooting gas and collision sites

Sormani et al. (2019)

Selected 25 warm, broad-lined clouds outside the CMZ

Atacama Compact Array

Shortest baselines of ALMA

ALMA (ESO/NAOJ/NRAO)

Data

50°09'	08'	07'	06'	05'	0-
		6	,		

Cloud 25 NH₃ (1,1)

04'

ALMA (30" beam) Band 6:

- SiO $J = 5 \rightarrow 4$
- $H_2COJ = 3_{21} \rightarrow 2_{20}, J = 3_{03} \rightarrow 2_{02}$
- $HC_3NJ = 24 \rightarrow 23$
- $CH_3OH J = 4_{22} \rightarrow 3_{12}$
- $C^{18}O, {}^{13}CO, {}^{12}CO J = 2 \rightarrow 1$
- H30α

Mopra (2' beam) HOPS (H_2O southern Galactic Plane Survey):

• NH₃ (1,1), (2,2), (3,3), (6,6)

Ammonia Temperature

Clouds closer to the Galactic center seem to be warmer

Formaldehyde Temperature

Presence of hot molecular cores not seen in ammonia

Temperature Comparisons

Ammonia and formaldehyde seem to trace different gas

Star Formation from *Spitzer*

Three-color *Spitzer* images (4.5, 8, and 24 micron) with H30*a* contours

Same clouds as with hot cores in H₂CO

VLASS cutouts with ¹³CO contours

17^h19^m36^s

24^s

l

18⁵

30^s

VLASS Detections

17^h26^m42^s

36^s

l

30^s

24^s

17^h19^m55^s

50^s

l

45^s

17^h25^m30^s 24^s

l

18^s

12^s

Star Formation Comparison

These conversions generally apply to larger spatial scales, so may not hold here

Turbulent Heating

Formaldehyde thermometer appears to be less sensitive to turbulent heating

Shock Heating

Formaldehyde thermometer appears to be more sensitive to shock heating. Or, SF enhances methanol more than turbulent shocks

Distribution of Cloud Properties

Distribution of Cloud Properties

Are our clouds on the Galactic bar?

Distribution of Cloud Properties

Conclusions

- Observed 20 clouds on the Galactic plane
- Measured various properties
 - Temperature, turbulence, star formation, and shocks
- Still more work needed to determine locations of clouds
 - Asymmetric bar
 - A few clouds are at collision sites between inflowing gas, overshooting gas, and the CMZ

Temperature Comparisons

 NH_3 (3,3)-(1,1) Temperature

351°38' 36'

34' 32'

351°52' 50'

Cloud 4

120

- 100

- 80

- 60

- 40

- 20

NH_3 (3,3)-(1,1) Temperature Error

350°16' 14'

12

- 12

- 10

- 8

- 6

- 4

- 2

(a)

(b)