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Optimal Transport (OT) defines a distance as the least amount of work to 
transport mass between two probability distributions given a cost function.

Optimal Transport

Unlike pixel-based distance measures, the Wasserstein/OT distance 
contains information about the underlying domain of the distribution. In 
recent years, the Wasserstein distance has become increasingly discussed in 
various aspects of computer science. Since it provides a notion of distance 
between distributions, it can be used in machine learning as an objective 
function1,2, in image interpolation as a way to calculate geodesics between 
images3, and in many other applications to computer graphics and vision4.

Mathematical formulation:

Cost matrix C: distance between pixels i and j
Transportation matrix P: how much mass to move from pixel i to j

Standard OT Cost Entropy term for convergence

-

Cost Matrix

OT Movie Reconstructions
3d_nxcorr = 0.930903 3d_nxcorr = 0.906226
OT-Regularized No OT (Initial Movie)

Motivation
The Wasserstein distance inherently encodes information about underlying physical motion 
between images through the transportation matrix. Similar to the transportation matrix is the 
optical flow, which calculates a velocity at points in an image based on pixel intensity changes. 

Comparison of OT transportation matrix and optical flow matrix between two frames of a ring and rotating hot spot 
model (left), a GRMHD model (center), and a jet model (right). The background image shows the difference 
between the initial and final frames. Bright spots are brighter in the initial frame and dark spots are brighter in the 
final frame. The white arrows show the optical flow vectors, and the red arrows show the OT transportation matrix, 
pointing to the “center of mass” of how each pixel’s initial frame flux is distributed in the final frame. 

The Wasserstein distance traces motion between frames, allowing for a reduced frame time 
interval in movie reconstruction. An ideal dynamic regularizer scales with how “different” two 
frames are; for a rotating model, the regularizer should be maximized at half the rotational 
period and minimized at the period. The Wasserstein distance does this better than a pixel-wise 
distance for both the rotating hot spot model (top) and the GRMHD model (bottom).
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The Wasserstein distance also appears to largely independent of 
resolution (smoothing with a Gaussian kernel) and time-binning, 
whereas the pixel-based square Euclidean distance is not.

Typically, the cost matrix for OT uses the standard Euclidean distance (left), 
but other options are also possible, such as a “polar” distance that punishes 
angular displacement more than radial displacement (right).

Cost to transport mass from the blue pixel

“Polar” DistanceEuclidean Distance

Comparison of the top OT-regularized movie reconstruction and the top non-OT reconstruction for the ring 
and rotating hot spot model. The residuals between the two show evidence of a bright area matching the 
position of the hot spot in the ground truth movie, indicating an improvement in the reconstruction.

Histogram of 3D normalized cross-correlation values (closer to 1 = more 
similar to ground truth) for all OT reconstructions compared to the 
non-OT reconstruction with the highest value. Adding OT as a regularizer 
shows quantitative  improvement in the majority of reconstructions.

The OT Wasserstein distance shows promise as a regularizer 
for coherent movie reconstruction of interferometric data. 
With the advent of upcoming next-generation VLBI arrays, 
reconstruction of black hole movies will help further 
understanding of astrophysics near the event horizon. This is 
an ongoing project in the EHT Collaboration dynamical 
imaging group, and we are actively performing further tests 
on BHEX and ngEHT simulated observations to confirm the 
viability of the OT distance as a dynamical regularizer.
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